MIMO Radar Space–Time Adaptive Processing Using Prolate Spheroidal Wave Functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions

In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multipleoutput (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals c...

متن کامل

Generalized and Fractional Prolate Spheroidal Wave Functions

An important problem in communication engineering is the energy concentration problem, that is the problem of finding a signal bandlimited to [−σ, σ] with maximum energy concentration in the interval [−τ, τ ], 0 < τ, in the time domain, or equivalently, finding a signal that is time limited to the interval [−τ, τ ] with maximum energy concentration in [−σ, σ] in the frequency domain. This probl...

متن کامل

Chromatic Series and Prolate Spheroidal Wave Functions

The Ignjatovic theory of chromatic derivatives and series is extended to include other series. In particular series of prolate spheroidal wave functions are used to replace the orthogonal polynomial series in this theory. It is extended further to prolate spheroidal wavelet series that enables us to combine chromatic series with sampling series.

متن کامل

Spatial smoothing in fMRI using prolate spheroidal wave functions.

The acquisition of functional magnetic resonance imaging (fMRI) data in a finite subset of k-space produces ring-artifacts and 'side lobes' that distort the image. In this article, we explore the consequences of this problem for functional imaging studies, which can be considerable, and propose a solution. The truncation of k-space is mathematically equivalent to convolving the underlying "true...

متن کامل

Analysis of spectral approximations using prolate spheroidal wave functions

In this paper, the approximation properties of the prolate spheroidal wave functions of order zero (PSWFs) are studied, and a set of optimal error estimates are derived for the PSWF approximation of non-periodic functions in Sobolev spaces. These results serve as an indispensable tool for the analysis of PSWF spectral methods. A PSWF spectral-Galerkin method is proposed and analyzed for ellipti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2008

ISSN: 1053-587X

DOI: 10.1109/tsp.2007.907917